
Non-persistent Elitism Compact Genetic Algorithm with Tendency and
its Application in Evolvable Hardware

JIANWEI MI XIAOLI FANG LIBIN FAN

Key Laboratory of Electronic Equipment Structure Design, Ministry of Education of China
Xidian University

No.2 South Taibai Road, Xi'an, Shaanxi 710071
CHINA

jackiemi@126.com

Abstract: - The compact genetic algorithm uses the value of probability variable to represent the population,
and each generation produces two chromosomes by the value. This dominant property makes it efficient to be
applied in evolvable hardware, and significantly reduces the storage capacity. However, in case of dealing with
the complex issues, its execution effects often fail to reach the required demands. Taking the problems above
into account, so this paper presents an improved compact genetic algorithm named None-persistent Elitism
TCGA (ne-TCGA), combined with the analysis of convergent trend. On the basis of TCGA (Compact Genetic
Algorithm with Tendency), it adopts the strategy of non-durable elitist preservation, which both ensured the
adequate selection pressure, and maintained the diversity of the population in the evolutionary process. The
analysis shows that the ne-TCGA applied in evolvable hardware has better computational efficiency than other
random search algorithm.

Key-Words: - Evolvable hardware, genetic algorithm, ne-TCGA

1 Introduction
After the fixed functional hardware and the
reconfigurable hardware, the next generation will be
self-configurable and evolvable hardware[1]. They
are endowed to solve large-scale and complex
problems by using the development patterns of
biology[2]. The configuration of logic circuits in
evolvable hardware is evolved via the evolutionary
algorithm, so the evolvable result and efficiency of
the evolutionary algorithm have an crucial influence
on whether the evolvable hardware can achieve the
desired function or not. At present, the evolvable
hardware technology can only accomplish simple
small-scale circuits. So it is still facing many
problems in the process of development, such as the
low speed of evolution, the low efficiency of
evolution, the weak robustness of evolvable
circuit[3,4]. In order to tackle with these problems,
we need to analyze the basic theoretical knowledge
thoroughly. It is of particularly importance to
investigate an algorithm with favorable effect of
convergence and high efficiency of execution.
 Therefore, this paper proposes an improved
Genetic Algorithm with trend named ne-TCGA
(none-persistent elitism TCGA), which improves the
convergent efficiency of algorithm and achieves
satisfactory performance of application in hardware
evolution.

2 Evolvable Hardware
The idea of evolvable hardware came from the
1950's, the father of computer John Von Neumann
proposed the vision of developing a machine with
self-reproduction and self-healing abilities. EHW
develops rapidly. And now it has become one of the
popular topics in international academia. Moreover,
reconfigurable hardware can be an experiment
platform applied to smart analog technology, such
as controller of analog neural network[5]. In China,
Kang et al early carried out the research about
theory and technology of evolutionary hardware[6].

Evolvable hardware refers to using the
evolutionary algorithm for configuring the
dynamically configurable circuits in programmable
logic device and finally evolving into the required
logic circuits. Evolvable hardware can change its
architecture dynamically like creatures as external
environment changes in order to achieve self-
organizing, self-adaptive and self-healing abilities.
It has a significant meaning for studying evolvable
hardware. Since the complexity of hardware
systems is increasingly raised, the difficulty in
system design is increased and the reliability is on
the contrary decreased. It can meet the hardware
adaptability to environment by using evolvable

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 47 Volume 17, 2018

hardware，which makes the system automatically
adjust its internal structures in real time for adapting
changes of internal and external environment[7].
Thus the system can operate by self-fault-tolerant.
Evolvable hardware technology will also have
infinite potential in embedded system design, and it
can be a promising solution for partitioning
hardware and software in embedded system design.
In sum, evolvable hardware has a broad application
prospect and considerable industrial, commercial
value in circuit design, fault-tolerant systems,
pattern recognition, artificial intelligence and other
fields.

3 The basic idea of ne-TCGA
Genetic Algorithm (GA) is a random search
algorithm for the simulation of natural evolution in
biosphere by using a series of encoded bit string to
describe the population of candidate solutions of the
problem. However, because it needs to store large
amounts of individual information in a population,
occupies a lot of storage space and has huge
calculation in dealing with complex issues[8].
Additionally, there are many ways and technologies
to improve the application of GA in FPGA[9]. The
compact genetic algorithm (CGA, Compact Genetic
Algorithm) was a successful one among them [10].
The compact genetic algorithm uses the probability
variables to describe the population. Its evolutionary
process is that each generation can randomly
produce two mutually independent chromosomes
according to the probability variables and calculate
fitness for them. The chromosome with good fitness
value will be treated as "Victor" by comparing their
fitness values. Then, it is needed to update variable
values of probability corresponding to every
individual chromosome according to the obtained
"victor" bit string. The evolution process ends and
makes the obtained probability variables as an
optimal solution for problems until every bit of
probability variables is converged to "0" or "1". The
bit numbers of probability variable are the same as
chromosome, and its value of each bit is the
probability of chromosome of which corresponding
bit is “1”. Therefore, CGA is very effective in
application of limited memory, such as evolvable
hardware[9].

3.1 The propose of ne-TCGA
Although CGA is more successful than GA in terms
of storage, it has an explicit termination criterion.

When every probability variables converges to "0"
or "1", the evolution ends. However, because the
CGA can achieve less information in the evaluation
of chromosome[11] and have poor search ability
and insufficient extraction capability to information
of excellent individual, it is straightforward to lose
the excellent individual and premature to converge,
and it can only be used to solve a simple problem of
first order. The implementation effect often are not
able to meet the actual application requirements for
complex issues and the implementation speed is
slow. So there is TCGA, TCGA increases
judgement for trend from the current solution
toward the optimal solution in the algorithm, and
introduces the strategy of elitist preservation. But
excessive elitist preservation may lead to premature
convergence. High selection pressure makes the
group converge rapidly. Thus it falls into local
optima at the expense of diversity of the population.
So this paper proposed ne-TCGA, and introduced
the non-durable strategy of elitist preservation and
parameters α which represents the maximum algebra
of elitist preservation. The elite individuals can be
inherited to the next generation within α-
generations, but it will regenerate two chromosomes
by the probability variables more than α-
generations. The following sections will describe
the detailed process of ne-TCGA.

3.2 Specific process of ne-TCGA

1) To construct a probability vector P which has
the same encoding length L as chromosome, and
each bit of probability vector is 0.5. And then the
probability vector randomly generates two
chromosomes. Each bit value of the probability
vector represents the probability of the generated
chromosome of which corresponding bit is “1”.

2) To calculate separately the fitness value of
two generated chromosomes and compare the two
fitness values. The chromosome with big fitness
value is treated as "winner". On the contrary, the
chromosome with small fitness value is treated as
"loser". Then comparing each bit of the "winner"
and "loser", if the two corresponding numbers are
not equal, then proceed 3). Otherwise, continue to
compare the next bit.

3) To invert each bit of the "winner", and then, to
judge and compare each fitness value between the
inverted individual and the original individual. If the
inverted fitness increases, to judge the value of
inverted bit. If its value is “1”, to update

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 48 Volume 17, 2018

corresponding bit value of probability variable by
adding the 1/N step length. If its value is “0”, to
update corresponding bit value of probability
variable by reducing the 1/N step length. The N
affects the computational cost and storage in the
algorithm running process, so it is defined as the
population quantity.

4) To determine whether it reaches the
convergent conditions. If it reached, then end the
process. If it didn’t, then proceed to the next step.

5) There are chromosome mutation operations in
this step. To judge whether each bit of probability
variables is bigger than 0.5, if it’s bigger than 0.5,
then continue to determine the corresponding bit of
the "winner" chromosome. If its value is “1”, then to
remain constant. If its value is “0”, then to invert the
bit; Otherwise, if the corresponding bit of "winner"
is “1”, then to invert the bit. If it is “0”, then to
remain constant. To judge and compare the fitness
value of generated chromosome with the fitness
value of original "winner" chromosome, and make
the chromosome with big fitness value as new
"winner."

6) To judge the algebras of elitist preserving. If
it’s not more than α, it will generate a new
chromosome by the probability vector and turn to
2). If it’s over α, it will generate two new
chromosomes by the probability vector and turn to
2).

The pseudo-code of ne-TCGA algorithm is as
follows:

Step.1 for i = 1 to L do P[i]=0.5;
 a=generate(p);
 b=generate(p);
Step.2 if fitness(a)>fitness(b) then
 winner=a;loser=b
 else winner=b;loser=a;
Step.3 for i = 1 to L
 if winner[i] != lose[i] then
 if winner[i]==1 then
 { winner[i]=0;fw=fitness(winner)
 If fw>fwn then P[i]=P[i]-1/N;
 else P[i]=P[i]+1/N;}
 else{ winner[i]=1;fw=fitness(winner)
 if fw>fwn then P[i]= P[i]+1/N;
 else P[i]=P[i]-1/N;}
Step.4 for i = 1 to L do
 if P[i]>0&&P[i]<1 then goto Step.5
 else end all
Step.5 if winner==a then
{c=mutate(a);
 if fitness(c)>fitness(a) then a=c;}

 else{c=mutate(b);
 if fitness(c)>fitness(b) then b=c;}
Step.6 if z<α a=winner;b=generate(P);z++
 else a=generate(P); b=generate(P);z=0;

4 Comparison of experimental results
of ne-TCGA, CGA and TCGA

Ne-TCGA inherits the advantage of less storage
space in CGA, and in which there are judgments for
trend from the current solution toward the optimal
solution. It can increase the search ability of
algorithm and quickly make the chromosome
individual converge to optimal solution. Then, in
order to get the better chromosome individual with
maximum probability, the improved the mutation
operation is introduced. Finally, to control the
generation of elitist preserving, we introduce the
non-durable elitist preserving strategy, so that
ensured the adequate selection pressure, and
maintained the diversity of the population for the
reasonable control of elitist preservation at the same
time. It has a great advantage of the control in
premature convergence. This paper uses CGA,
TCGA, and ne-TCGA to separately seek the
maximum of two functions as follows.

2sin 5 60 800
180

y x x xπ
= − + + (1)

sin10 2y s xπ= + (2)

where, x is real independent variable, and y is the
dependant value of the functions.

The graph of functions in Eqs.(1) and (2) are
shown in Fig.1 and Fig.2, respectively. The result of
comparisons on performances and required numbers
of evaluations are shown in Figs. 3, 4, 5 and 6.

Fig.1 Curve of function in Eq.(1)

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

x

y

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 49 Volume 17, 2018

Fig.2 Curve of function in Eq.(2)

Fig.3 Evolution generation number of function in Eq.(1)

Fig.4 Maximization of function in Eq.(1)

Fig.5 Evolution generation number of function in Eq.(1)

Fig.6 Maximization of function in Eq.(2)

As can be seen from the figures, the evaluation
numbers of the three algorithms are increasing with
N increases. But the ne-TCGA algorithm always has
the minimum number of evaluation and the best
performance of solution. When seeking the
maximum of the function in Eq.(2), although CGA
once searched the maximum in domain of definition
in the evolutionary process, the result converged to
local maxima and did not get the maximum with
poor performance of solution.

5 The application of ne-TCGA in the
evolvable hardware

Evolvable hardware is used to encode structures and
parameters of circuit which are treated as
chromosome and execute evolutionary operation.
The classical genetic algorithm occupies large
memory and has large calculations for extensive
range searching. Therefore, in order to reduce the
storage and speed up the efficiency of searching, we
introduced the ne-TCGA algorithm proposed
previously, This paper uses ne-TCGA algorithm
which regards a full adder as the evolutionary target.
It chooses FPGA development board which is
Altera's Stratix II family EP2S30F484I4 to design
self-evolutionary system and verifies the validity of
algorithm.

5.1 Hardware design of self-evolutionary
System
The designed self-evolutionary system contains the
virtual reconfigurable circuit-based IP core.
Evolvable IP core is an evolutionary circuit which is
controlled by evolutionary algorithm and can run on
the Nios II soft-core. The designed IP core in this
paper is a Cell Array consisting of cell array of 8 ×
5[12], as shown in Fig.7. The input of 8 cells in the
first column is made up of the 8 inputs which is

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

10 20 30 40 50 60 70 80 90 100 110
0

100

200

300

400

500

600

700

800

900

1000

Population Size

E
v
o
lu

ti
o
n
 G

e
n
e
ra

ti
o
n
 N

u
m

b
e
r

ne-TCGA

TCGA

CGA

10 20 30 40 50 60 70 80 90 100 110
979

979.2

979.4

979.6

979.8

980

980.2

980.4

Population Size

M
a
x
im

u
m

ne-TCGA

TCGA

CGA

10 20 30 40 50 60 70 80 90 100 110
0

200

400

600

800

1000

1200

1400

1600

Population Size

E
v
o
lu

ti
o
n
 G

e
n
e
ra

ti
o
n
 N

u
m

b
e
r

ne-TCGA

TCGA

CGA

10 20 30 40 50 60 70 80 90 100 110

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Population Size

M
a
x
im

u
m

ne-TCGA

TCGA

CGA

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 50 Volume 17, 2018

provided externally and the inversion of 8 inputs.
The cell input in the second column is constituted
by the external 8 inputs and 8 outputs in the first
column. The inputs in the third column and the
subsequent column are made up of the output of the
first two columns. This Cell Array has eight outputs.

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

0 dIn0

R
ow

 N
um

be
r

1 dIn1

2 dIn2

3 dIn3

4 dIn4

5 dIn5

6 dIn6

7 dIn7

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

d Out0

d Out1

d Out2

d Out3

d Out4

d Out5

d Out6

d Out7

0 1 2 3 4

Column Number

Fig.7 Schematic diagram of the Cell Array
The designed basic logic configuration cell is

shown in Fig.8, which is composed of the look-up
table and multiplexer. As can be seen from the
figure, the cell unit has three inputs and one output.
Because the Cell Array has 16 external inputs, the
three inputs are determined by three selectors of 16-
to-1 and the output of selector can act as control bits
to determine the input of look-up table (LUT)
behind. Because each selector of 16-to-1 is
configured by four chromosomes and (LUT) look-
up table needs 8 bits, to configure a single cell
totally requires (3 × 4) + 8 = 20 bits. Since Cell
Array contains 40 cell units, it needs 20 × 40 = 800
chromosome to configure a Cell Array.

16to1
Mux

16to1
Mux

16to1
Mux

4 4 4 8

8X1bit
RAM

Logic
Function

Circuit
Connectivity

dOut

dIn
16

20 bit Configuration Register

Fig.8 Schematic diagram of internal structure in cell unit
Evolvable IP core has 8 external inputs and 8

outputs, but a full adder only has 3 inputs and 2
outputs. So it just takes 8 combinations of low three
places in 8 external inputs as the input of full adder
in this paper. This operation will be used in the Nios
II IDE by C language. After inputting the test
vectors, it operates the outputs of Cell Array XNOR
the true table of 8 inputs. The higher 6 bits of the
obtained signals are shielded. This operation can be

explained by the following reason. The full adder
has only 2 outputs, it puts the 0x3 into MASK
register and operates AND with matched signals.
Then outputs match data and computes "1" numbers
of match data, that is the fitness value.

5.2 The verification self-evolutionary system
The ne-TCGA algorithm in this paper is
implemented using software method in Nios II soft-
core. We download the program to the board by the
JTAG download cable to validate the self-
evolutionary system. The result shows that although
the designed self-evolutionary system using ne-
TCGA algorithm has a slight increase in evolution
generation than the GA algorithm, it can greatly
reduce the storage space.

6 Conclusion
We proposed the ne-TCGA algorithm based on
these problems of the Genetic Algorithm applied to
evolvable hardware occupies large memory and the
CGA algorithm has poor search capabilities when
dealing with complex issues. The non-durable elitist
preserving strategy is added on the basis of TCGA
algorithm, thereby in case of inheriting advantages
of TCGA algorithm, such as the less storage space
occupied, the definite condition of convergence, the
good convergence, the strong search capabilities, it
reduces the possibility of falling into local optimal
solution and the convergence and search capability
are better than TCGA. By applying the ne-TCGA
algorithm to the designed self-evolutionary system,
we proved the superiority of ne-TCGA algorithm on
storage space. The ne-TCGA algorithm will have
great potential in hardware evolution by its simple
implementation methods and advantage of less
storage space occupied in hardware.

Acknowledgement
The authors would like to appreciate the Editor,
Associate Editor, and the reviewers for their
valuable comments and suggestions.

References:
[1] HARTENSTEIN R. Trends in reconfigurable

logic and reconfigurable computing. 9th IEEE
International Conference on Electronics.
DUBROVNIK, CROATIA, 2002: 801-808.

[2] Gordon TGW , Bentley PJ. Towards
development in evolvable hardware.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 51 Volume 17, 2018

NASA/DOD Conference on Evolvable
Hardware. ALEXANDRIA, VA, 2002:241-
250.

[3] Fernando PR, Katkoori S, Keymeulen D,
Zebulum R, Stoica A. Customizable FPGA IP
core implementation of a general-purpose
genetic algorithm engine. IEEE Trans Evol
Comput. 2010, 14(1):133–149

[4] Yutana Jewajinda, Prabhas Chongstitvatana. A
parallel genetic algorithm for adaptive
hardware and its application to ECG signal
classification.Neural Comput & Applic. 2013,
22:1609–1626

[5] Amaral JFM , Amaral JLM. Towards
evolvable analog airtificial neural networks
controllers. 6th NASA/DoD Conference on
Evolvable Hardware. Jet Propuls Lab,
Seattle,2004:46-52.

[6] Kang Li-Shan, He Wei, Chen Yu-Ping.
Evolvable hardware realized with function type
programmable device. Chinese Journal of
Computers, 1999, 22(7): 781- 784

[7] Zhao Shu-Guang, Liu Gui-Xi. Basic basic
theory and key technology of evolutionary
hardware. System Engineering and Electronic
Technique.2002,24(1):70-73.

[8] Marco A. Moreno-Armendáriz, Nareli Cruz-
Cortés,Carlos A. Duchanoy,et al, Hardware
implementation of the elitist compact Genetic
Algorithm using Cellular Automata pseudo-
random number generator. Computers and
Electrical Engineering,2013(39):1367-1379.

[9] Fernando PR, Katkoori S, Keymeulen D,
Zebulum R, Stoica A.Customizable FPGA IP
core implementation of a general-purpose
genetic algorithm engine. IEEE Trans Evol
Comput,2010,14(1):133–149.

[10] Harik G R. The Compact Genetic Algorithm[J].
IEEE Trans. on Evol. Comput., 1999, 3(4):
287-297.

[11] Cupertino F, Mininno E, Lino E, Naso D.
Compact genetic algorithms for the
optimization of induction motor cascaded
control. Electric machines & drives
conference,2007:7–82.

[12] LIU Jieli, YAO Rui. The Implement of
Evolvable Hardware on the Design Method of
SOPC. Journal of Jiamusi University.
2012,30(2):109-212.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jianwei Mi, Xiaoli Fang, Libin Fan

E-ISSN: 2224-266X 52 Volume 17, 2018

